sábado, 9 de febrero de 2013

DESIGUALDADES

INTERVALOS E INECUACIONES LINEALES


Intervalos e inecuaciones lineales

1. Intervalos e inecuaciones lineales
Los intervalos son subconjuntos de los números reales que se pueden representar gráficamente en la recta numérica por un trazo o una semirrecta.

Existen intervalos abiertos, en los que no se incluyen los extremos; cerrados en los que se
incluyen los extremos, y por último aquellos en que se combinan ambos.
Para representarlos se utiliza una circunferencia vacía en el extremo, si este no se incluye, o rellena si se incluye.

La simbología que se utiliza en los casos abiertos (que no incluyen al extremo) son el signo < o >; y para los casos cerrados (que incluyen al extremo) son el signo (mayor o igual, o menor o igual).

Por otra parte, los intervalos se pueden representar en forma de conjunto o con corchetes:
Ejemplo:
Todos los reales comprendidos entre
a y b, sin incluir a, ni b.
Todos los reales mayores que
a, sin incluir a.
Todos los reales entre
m y n, incluyendo a m y no incluyendo a n.

Observa el esquema:




 

INTERVALOS DE DESIGUALDADES


GRAFICAS DE DESIGUALDADES..*


miércoles, 6 de febrero de 2013

desigualdad de 3 componentes


desigualdades (primer grado)


EJEMPLOS DEDESIGUALDADES

EJEMPLOS DE DESIGUALDADES::


La solución de una inecuación es el conjunto de valores de la variable que verifica la inecuacíón.
Podemos expresar la solución de la inecuación mediante:
1. Una representación gráfica.
2. Un intervalo.
2x − 1 < 7
2x < 8     x < 4
solución
(-∞, 4)
2x − 1 ≤ 7
2x ≤ 8     x ≤ 4
solución
(-∞, 4]
2x − 1 > 7
2x > 8     x > 4
solución
(4, ∞)
2x − 1 ≥ 7
2x ≥ 8     x ≥ 4
solución

Criterios de equivalencia de inecuaciones


Si a los dos miembros de una inecuación se les suma o se les resta un mismo número, la inecuación resultante es equivalente a la dada.
3x + 4 < 5         3x + 4 − 4 < 5 − 4       3x < 1
Si a los dos miembros de una inecuación se les multiplica o divide por un mismo número positivo, la inecuación resultante es equivalente a la dada.
2x < 6                2x : 2 < 6 : 2       x < 3
Si a los dos miembros de una inecuación se les multiplica o divide por un mismo número negativo, la inecuación resultante cambia de sentido y es equivalente a la dada.
−x < 5          (−x) · (1) > 5 · (1)      x > −5

DESIGUALDADES



DESIGUALDADES O INECUACIONES:


Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos:
< 
menor que
2x − 1 < 7
menor o igual que
2x − 1 ≤ 7
> 
mayor que
2x − 1 > 7
mayor o igual que
2x − 1 ≥ 7
Inecuaciones equivalentes
Si a los dos miembros de una inecuación se les suma o se les resta un mismo número, la inecuación resultante es equivalente a la dada.
Si a los dos miembros de una inecuación se les multiplica o divide por un mismo número positivo, la inecuación resultante es equivalente a la dada.
Si a los dos miembros de una inecuación se les multiplica o divide por un mismo número negativo, la inecuación resultante cambia de sentido y es equivalente a la dada.
Resolución de inecuaciones de primer grado
 Quitar paréntesis.
 Quitar denominadores.
 Agrupar los términos en x a un lado de la desigualdad y los términos independientes en el otro.
 Efectuar las operaciones
 Como el coeficiente de la x es negativo multiplicamos por −1, por lo que cambiará el sentido de la desigualdad.
 Despejamos la incógnita.
Obtenemos la solución como una desigualdad, pero ésta también podemos expresarla:
De forma gráfica
Como un intervalo
Resolución de sistemas de inecuaciones con una incógnita
Se resuelve cada inecuación por separado, siendo el conjunto solución del sistema la intersección de los conjuntos soluciones de ambas inecuaciones.